합성이론 11장 part2 :Amplitude Modulation

2.  사용하기        
이제 이론에서 실제로의 접근을 시작해 볼 차례입니다.
일단 여러분이 키보드에서 Carrier를 연주할 때 Modulator는(같은 amplitude에서) 고정된 프리퀀시를 가지고 있다고 가정해 봅니다. 그것을 100Hz라고 해두고요.

* CASE 1
Carrier 가frequency 100Hz의 modulator를 가질 때, Amplitude Modulation 으로 생성되는 3개의 frequencies는0Hz, 100Hz, 200Hz가 되겠지요? 지난번에 말씀 드렸듯이 이것은 합, Carrier, 차, 이렇게 3가지 신호가 됩니다. 여러분은 아마 여기에서 0Hz가 아무런 효과가 없을거라 생각하실것입니다. 그러나 그렇지 않죠. 왜냐. 그것은 여전히 amplitude를 가지고있으며 (Modulator amplitude의 절반) 그리고 그것은 signal에서 offset으로 나타납니다. 우리는 바로 이것을DC (직렬) offset 이라 합니다. 왜냐하면 0Hz에 있는 것은 oscillation frequency를 가지지 않기 때문이지요.

위의 그림 11이 잘 보여주고 있습니다. X축 위로 높은 비율의 신호가 있지요. DC offsets은, 신호가 필터나 amplifier와 같은 synthesizer modules 에 의해서 적용될 때에 중요한 효과가 될 수 있습니다.  지금은 DC offset에 대해서는 이쯤 이야기하고 넘어가기로 합니다.

다른 두 신호는 Carrier 100Hz, 와 합의 값 200Hz가 있지요. 그 합의 신호는 물론 정확하게 Carrier의 옥타브 위의 값이 되겠지요. 그래서 이 소리는 harmonic하거나 ‘sweet’하게 들립니다. 어찌되었건, 이 경우, 출력에서 3개의 성분을 볼수 있습니다.

Carrier frequency 의0 %, 100 %, 200 %.

* CASE 2
키보드에서 몇 개의 음을 더 내어봅니다. 200Hz라고 가정해불까요?이것이 우리의 새로운Carrier frequency라 해봅니다. Modulator는 변화를 주지 않는다면(100Hz) 차의 값은100Hz가 되겠죠. 그리고 합은 300Hz이 됩니다. 이렇게 생성되는 소리는 여전히 조성적인 느낌을 주겠네요. 왜냐하면 차의 신호가 Carrier의 옥타브 아래 값이기 때문입니다. 그러나, 합의 값은 이제 Carrier와 조금 동떨어지는 조성관계에 있게 됩니다. 그러나 이 예제에서 또다른 특별한 점을 보게 됩니다. 그것은 합의 신호가 차의 신호의 3번째 하모닉스라는 것입니다. 따라서 출력 소리는 ‘음악적(?)’으로 들립니다. (Carrier가 차의 신호의 두번째 하모닉스이며 주된 신호이지만, 최종적으로 들리는 것은 Carrier 중심이 아니게 된다는것입니다.) 이 경우의 성분은

Carrier frequency 의50 %, 100 %, 150 %. 가 되겠네요.

* CASE 3
이제 더 random 한 frequency 를 Carrier로 잡아볼까요? 음…..371Hz정도? 그럼 차와 합의 값은 271Hz와471Hz가 되겠네요. 그리고 여기에는전혀 하모닉적인 요소가 없습니다. 3개의 요소는 다름과 같겠습니다.

Carrier frequency 의 73 %, 100 %, 127 %. 즉, enharmonic한 소리가 되겠네요

그러나 이런 비화성적인 소리는 사실상 모든 신호가 이런 경우에서 취급될 때에 일어납니다. 사실 위의 Case1과 2의 예와 같은 경우는 매우 드물지요. 결과적으로 고정된 Modulator AM 은 대부분 aggressive하고 ‘음악적이지 않은’ –위의 ‘음악적’이라고 쓴 말에 비유하자면- 경우에 더 유용하게 쓰여서 여러분이 만드는 소리에 다른 Drama를 연출하게 해 주는 것입니다. 여러분이 ‘얼마나 비 화성 적으로 사용할 것인가’를 조절할 수 있는 것이지요.
그러나 만약 Modulator가 고정되어 있지 않다면?  이런 경우를 생각해 봅니다. 여러분이 같은 CV 소스를 사용하여 와 Carrier 와 Modulator 의 frequency에 영향을 주면서 를 함께 연주한다고 생각해 보는 것입니다.

*CASE 4
잠시 Case2를 다시 봅니다. Carrier는 200Hz 이고 Modulator는 100Hz이었지요. 전처럼 출력이 200Hz을 가지고, 합과 차signal은 100Hz과 300Hz입니다. 그러나 이번에는, 우리가 synthesizer patch를 할 것입니다. 따라서, 여러분은 Carrier를 위아래로 이동시켜 봅니다. Modulator frequency 는 Carrier의 변화를 그대로 따라갑니다. 예를들어 여러분이 Carrier frequency 400Hz 을 연주(200Hz보다 한 옥타브 높은)하면 Modulator frequency 또한 2배가 되고 차와 합의 값은 200Hz 과 600Hz 이 되겠죠? 이 두 가지 경우에서(case2와 carrier 400Hz의 경우), 차, Carrier, 값의 관계는 50 %, 100%, 150 %입니다. 0따라서  Frequency는 2배가 되었지만, waveform의 모양은 그대로 남아있게 될 것입니다.

따라서, 여러분이 어떤 frequencies를 선택하든지, 차, Carrier,합의 관계는 만약 Carrier와 Modulator가 똑같이 이동한다면 관계의 변화(%)는 없을 것이라는 것을 알게 되었습니다. 결과적으로 여러분은 계속적인 tone을 얻어낼 수 있다는것이지요. 따라서 이것은 복잡하고 하모닉적이지 못한 음색이 음색은 지속하되, pitch만 변경할 수 있는 패치를 만들어 낼 수 있습니다.

Amplitude Modulation 은 여러분이 전통적인 oscillators하나만으로 얻을 수 없는 새로운 소리를 연주하고 만들수 있게 해주는 강력한 툴로서 사용될 수 있습니다.

물론 예에서 보여드린 것은 sinewave의 단순한 경우이지만, 다른 waveform에서도 물론 똑같이 적용됩니다. square waves 나sawtooth waves를 Carriers and Modulators로 사용할 수 있을까요? 물론 안됄 이유가 없지요. 그리고 또한 이것을 이해하는 것도 어려울것이 전혀 없습니다.

sawtooth wave 가 모든 harmonics 를 포함하고 있다는 것 아마 제가 수차례 이야기 드려서 이제 잘 기억하시죠? 예를들어 100Hz sawtooth 는 100Hz, 200Hz, 300Hz, 400Hz… 를 전부 포함한다죠? 또한 75Hz sawtooth 는 75Hz, 150Hz, 225Hz…등등을 포함합니다.
그럼Amplitude Modulate을 100Hz sawtooth Carrier와 75Hz sawtooth Modulator를 가지고 한다면?

단순하게 fundamental 은 25Hz, 100Hz, 175Hz(차, Carrier,합)
두번째 하모닉스는 -50Hz, 100Hz, 250Hz (-50이라뇨? 이것은 사실 단순하게 50Hz으로 들립니다. 일단 그러려니 하고 넘어가세요).
세번째는125Hz, 100Hz, 325Hz

덧셈과 뺄셈으로 해결되는 쉬운 이해지요? 복잡하게 여겨지지만 배경은 전혀 어렵지 않고 단순한 것을 볼 수 있습니다. 소리는 아주 복잡하겠다는 것을 알 수 있죠.

3. Ring Modulators
또 다른 synthesizer modules 이 있습니다. 이것은 Modulator를 소거시키고 Carrier를 출력에서 소거시키기도 합니다. 그이름 유명한 Ring Modulators. Ring Modulator는 Amplitude Modulator의 특별한 역할을 합니다. 게다가 이것은 단지 Carrier 와 Modulator waveforms가 정확하게 0volt에 중심이 되어있을 때 적용됩니다. 많은 RM ‘AC-coupled’인데, 이것은 입력에서 어떤 DC offert이 modulation이전에 소거되는 것을 의미합니다. 그 결과 출력은 합과 차로만 이루어 져 있습니다. 그러나 이 두개의 신호는 입력 frequency가 아닌것이지요. 단지 몇 개의 RM ‘DC-coupled’ 이며 이것은 AC-coupled 와  다르게 적용됩니다. 대부분은 Carrier와 Modulator가 출력으로 지나가게 해 줍니다. 또한 몇 개의 RM은 몇 synthesizer장비에서AC-coupled 와 DC-coupled을 선택할 수 있도록 하는 스위치를 제공하기도 합니다.

4. Filter Modulation
저는 Filter만 나오면 긴장이 되곤 했더랍니다. 하지만 가장 매력적인 부분이라고 말해도 과언이 아닙니다. 이곳에서도 마찬가지에요.
만약 우리가 LPF의 cutoff를 modulate한다면?  (긴장하지 마세요 ^^)

자. 그럼 복잡한 wave의 하나의 harmonic이 cutoff frequency Fc .위 아무 곳에나 있다고 생각해 봅시다. 여러분이 Fc 를 modulate하는 것 처럼 여러분은 harmonic이 modulation에 의하여 감쇄하는 것을 발견할 수 있습니다. 다른 말로, 그 harmonic은 필터가 action을 변화함으로 인해서 Amplitude Modulate되고 있는 것입니다.  Modulation의 width에 따라서(Modulator의 최대 amplitude) 그 시그널 이내에서 모든 다른 harmonics도 더 크거나 작은 범위로 modulate됩니다. 따라서 다른 set의 harmonics를 modulating하는 harminics를 가지지 않고도, 각각의 성분은 이와 같은 방법으로 modulate되는 것입니다!! 원츄!!

5. Frequency Modulation
자. Amplitude Modulation (tremolo)와 Filter Modulation (growl)는 설명이 되었지요.
이제 Frequency차례입니다. 다음주에 접할 Frequency Modulation은 아쉽게도 조금 더 복잡하고, 수학공식도 또 등장합니다. 하지만 그만한 가치가 있는 녀석이지요?
그럼 다음주에 또 뵙겠습니다.

날씨도 더운데 건강 조심하시고 공부도 열심히!

Leave a Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.